Hoàn cảnh khác Giới hạn của hàm số

Dãy số

Với hàm số trên trục số thực, một cách để định nghĩa giới hạn của một hàm số là bằng giới hạn của dãy số. (định nghĩa này thường được cho là của Eduard Heine). Trong hoàn cảnh này:

lim x → a f ( x ) = L {\displaystyle \lim _{x\to a}f(x)=L}

nếu và chỉ nếu với mọi dãy số xn (xn khác a với mọi n) hội tụ về a, dãy f(xn) hội tụ về L. Năm 1916, Sierpiński chứng minh sự tương đương của định nghĩa này và định nghĩa ở trên, sử dụng một dạng yếu hơn của tiên đề chọn. Chú ý rằng để định nghĩa một dãy xn hội tụ về a vẫn cần định nghĩa (ε, δ) của giới hạn.

Tương tự với định nghĩa của Weierstrass, một định nghĩa Heine tổng quát hơn áp dụng cho hàm số định nghĩa trên tập con của tập số thực. Gọi f là một hàm số giá trị thực với tập xác định D, a là giới hạn của một dãy các phần tử thuộc D \ {a}. Khi ấy giới hạn của f là L khi x tiến tới a nếu

với mọi dãy xn ∈ D \ {a} mà hội tụ về a thì dãy f(xn) hội tụ về L.

Giải tích không chính quy

Trong giải tích không chính quy, giới hạn của hàm số được định nghĩa là:

lim x → a f ( x ) = L {\displaystyle \lim _{x\to a}f(x)=L}

khi và chỉ khi với mọi x ∈ R*, nếu x - a vô cùng nhỏ thì f*(x) - L là vô cùng nhỏ.

Ở đây R* là tập số siêu thực và f* là mở rộng tự nhiên của f cho tập số thực không chính quy. Keisler chứng minh rằng định nghĩa giới hạn sử dụng số siêu thực giúp đơn giản hóa đi hai biến.[1] Mặt khác, Karel Hrbacek viết rằng để những định nghĩa như thế hợp lệ cho mọi số siêu thực, chúng vẫn phải gián tiếp sử dụng phương pháp ε-δ, và cho rằng, từ góc nhìn sư phạm, việc giải tích không chính quy có thể được thực hiện mà không cần phương pháp ε-δ là khó khả thi.[2] Piotr Błaszczyk và những người khác chỉ ra sự hữu dụng của liên tục vi mô trong việc xây dựng một định nghĩa rõ ràng cho tính liên tục đều, và đánh giá chỉ trích của Hrbacek là "lời than vãn mơ hồ".[3]

Độ gần

Tại hội nghị toán học quốc tế 1908, nhà toán học Frigyes Riesz giới thiệu một cách khác để định nghĩa giới hạn và tính liên tục sử dụng một khái niệm gọi là "độ gần". Một điểm x được gọi là "gần" một tập S ⊆ R nếu với mọi r > 0, tồn tại một a ∈ S sao cho |x - a| < r. Trong trường hợp này, ta có

lim x → a f ( x ) = L {\displaystyle \lim _{x\to a}f(x)=L}

khi và chỉ khi với mọi tập A ⊆ R, nếu a gần A thì L gần f(A). Ở đây f(A) ký hiệu cho tập {f(x) | x ∈ A}. Định nghĩa này cũng có thể mở rộng cho không gian mêtrickhông gian tôpô.